
SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Review Version Control Concepts

Managing change is a constant aspect of software development.

▪ The Product and Sprint backlogs represent the upcoming changes.

▪ A software release is a snapshot of code at a certain time.
• Capturing a certain set of user stories
• Multiple releases may be done so the team needs to keep track of multiple snapshots

(aka versions)

▪ Version control systems (VCS) are used to manage changes made to
software and tag releases.

2

There are a few fundamental activities of change management
that every VCS supports.

▪ Directories and files are tracked in a repository.
• Each developer has their own workspace.
• But share a common remote repository.

▪ You can
• Make changes in your workspace
 Add files or directories
 Remove files or directories
 Modify or move files
 Binary files are tracked as a single unit

• Commit the changes to a repository.
• Sync your workspace with a repository.
• Create branches to track user stories.
• Explore the history and changes to a repository.

3

Git has four distinct areas that your work progresses through.

4

Working Staging Local Remote

This is your local working

directory where you do your

development work.

This is the shared remote

repository that you use to

synchronize your work with

the rest of the team's work.

This is your local copy of the shared

remote repository which may not be

in sync with the remote.

These are the changes that you

specified you want in your next

commit to the local repository.

Your local repository and working copy do not automatically stay
in sync with the remote.

5

Working Local Remote
fetch

A fetch synchronizes the

local repository with the

remote repository.

merge

A merge incorporates new

changes fetched to the local

repository into the current branch

that your working copy is on.

fetch mergepull

A merge may detect changes that can

not be automatically incorporated.

This is called a merge conflict.

A branch is an independent

stream of repository changes

which isolates work from the

rest of the repository.

When you make local changes, those changes must pass through
all four areas.

6

Working Staging Local Remote
pushcommitadd

You add to the staging area all

of your working copy changes

that you want to commit.

Then you commit those

changes to your local copy

of the repository.

Works

on files

Finally, you push the changes to

the remote repository.

The default behavior for git will not allow you to

push to the remote repository if your local

repository is not up-to-date with remote. Getting

in sync may create merge conflicts with your

local changes that you will have to fix.

Version control branching supports the ability to manage software
releases.

▪ At the end of a sprint, the team will want to include done stories but exclude
incomplete stories.

▪ This cannot be done when all of the stories are developed in the master
branch.

▪ Feature branching is a technique that creates a branch for each story during
development.
• Changes are isolated in specific branches.
• When the story is done, the feature branch is merged into the master branch.
• The master branch never receives incomplete work.
• Thus master is always the most up-to-date, working increment.

7

An example sprint at the end.

8

In Dev In Test
Ready

for Test

Sprint 2

Done

S3

S4

S6

Sprint 2

Backlog

S8 (5)

Sprint 1

Done

S1

S2

S5

Two developers collaborate on a story by working on the same
feature branch.

▪ The developers share code on a story by syncing to the same remote feature
branch.

10

Two interdependent stories can share changes across two
branches.

▪ The first story branch is created from master and the second branch is
created from the first.

11

Not shown are the coordinating remote branches

Merging happens a lot and usually goes well; other times not so
much.

▪ Every time you sync with the remote repository a merge occurs.

▪ A merge conflict occurs when there is at least one file with overlapping
changes that can not be automatically resolved.

12

Here's an example of a merge conflict.

▪ Consider Betty and Sam independently fix this bug.
/**
* Calculate a half-off discount.
*/
public float calculateDiscount(final float cost) {
return cost * 2;

}

▪ Betty did this: return cost / 2;

▪ Sam did this: return cost * 0.5f;

▪ When Sam merges in the code from Betty:

➔ git merge dev1

Auto-merging src/main/java/com/example/model/Promotion.java

CONFLICT (content): Merge conflict in src/main/java/com/example/model/Promotion.java

Automatic merge failed; fix conflicts and then commit the result.

13

Resolving a simple text conflict is often easy.

▪ When a conflict occurs git reports the affected files.
public float calculateDiscount(final float cost) {

<<<<<<< HEAD
return cost * 0.5f;

=======
return cost / 2;

>>>>>>> dev1
}

▪ Determine the best solution, and remove the other solution and the marker
text.

▪ Then follow through with an add, commit, and push.

14

The HEAD in Sam's workspace.

This is the code from Betty's branch.

To minimize the number of times when conflicts will not resolve
easily, follow several guidelines.

1. Keep code lines short; break up long calculations.

2. Keep commits small and focused.

3. Minimize stray edits.

4. If multiple developers are collaborating on a feature, each developer
should sync with the remote feature branch regularly.
• Merge in the remote feature branch and then push to it, if you have changes.

5. If development of a feature is taking a long time, back merge master to
sync completed features for this sprint into the feature branch.

15

Using feature branches will be a standard part of your
development workflow.

16

